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D I F F R A C T I O N  O F  S U R F A C E  W A V E S  

O N  A N  I N H O M O G E N E O U S  E L A S T I C  P L A T E  

I. V .  S t u r o v a  UDC 532.59:539.3:534.1 

Th, e oblique incidence of smaU-amplitudc waves on an elastic semi-i~finite composite plate 
floating on the free surface of finite-depth water is studied. The front part of a constant-width 
plate is hinged to the basic part and has characteristics diffew.nt from those of the basic part. 
The reflection and transmission coejfieients of the waves and the vertical displacements of the 
plate are dete~nined. It is shown that the heterogeneity of the plate material exerts a strong 
effect on surface-wave diffraction. Methods for decreasing the elastic deformations of the basic 
part of the plate are proposed. 

The prot)lem of surface-wave (tili~action by a thin elastic plate located on the free surface of water is 
of interest for studying the behavior of an ice sheet and nmn-made structures such as floating platforms. In 
the linear approzdmation, this problem for a homogeneous plate in the form of a half-I)lane or band has been 
examined quite adequately [1, 2]. In the ice sheet, the heterogeneities appear  as a result of ('racking, breaking, 
and hummocking. The  eii~ct of these heterogeneities has been considered in [3-6]. For artificial structures, 
the heterogcneities of material can be more (liverse and even created artificially with a view tow'm-d decreasing 
the elastic deformation in the middle part of a floating l)latform. 

In this paper, the ot)lique in(.idence of monochronmtic 'surface waves on a senti-infinite eh~tic plate 
whose front part  is a freely supI)orted band with characteristics different from those of the 1)~ic part is 

studied. 
F o r m u l a t i o n  o f  t h e  P r o b l e m .  An elastic semi-infinite composite plate  whose settling is m~sumed to 

be negligible floats on the free surface of a basin of constant  del)th H. A progressive wave with frequency 
is incident from the side of the free, surface of the t)a~sin at  an angle to the recti l inear edge of the plate. The 
coordinate system is chosen in such a w~kv that the coordinate  origin is located at the basin bot tom un(ier 
the plate edge, the x and y axes are perpendicular and parallel to it. respectively, and the z axis is directed 
vertically uI)ward. The  plate consists of two parts: the front part  of constant  width L is characterized bv 
Young modulus EL, thickness b l, density Pl, Poisson's ra t io  z~l; the other par t  of the plate has, respectively, 
the following characteristics: E2, b2, p~, and 1/2. The edges of tim plate components  are freely supported on 

tim line x -- L, z -- H.  
Tim incoming wave I)ropagates at an angle 0 to the x axis and is de termined by the velocity potential 

,~0(x,  ~) = ~0(~:, z)  e x p  [ / (~ t  - Jy)] .  

Here 

~a'qc"sh(~':)exp(-i~:'O, (~,9) h:o(cosO, sinO), x=(:r,~/,:). ~0 ---- = 
cosh (koH) 
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[a is the wave amplitude, g is the acceleration of gravity, and the wavenumber k0 is tile positive root of the 
equation w 2 = gko tanh (k0H)]. Hereinafter, in the expressions that contain the factor exp (iwt), only the real 

part has a l)hysical meaning. 
We consider steady waves, and since the elastic-plate length is infinite, tile velocity potential of the 

perturbed motion of the fluid is sought in the tbrm 

4~(x, t) = c2(x, z) exp [i(wt - d.9)]- 

For determination of p(x,  z), it is necessary to solve the equation 

with the boundary conditions 
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where Dj = Ejh,a/(12pg(1 - u~)), itj = p j h j / ( p g )  ( j  = 1, 2), and p is the water  density. The plate is assumed 
to contact with water at any I)oint and at any moments  of time. The contact-boundary conditions, which 
are reduced to specifying the shear threes, bending moments ,  and vertical displacements, should be satisfied 

at the edges of separate parts of the plate. 
C o n t a c t - B o u n d a r y  Cond i t i ons .  According to [4, 6], the following conditions for vertical displace- 

ments of the plate rl(x. 9, t) are met on the hinged-joint line of the t)late parts  for x = L and z = H: 

,.+ = . - ;  (1) 

O 2  �9 " r 

,o2),,_ o(o, o,) 
D, ~ ~ + ,.~ ~ = D2 ~ ~O:r- + ~'' ~ .+; ('3) 

o'- + o2 = 
D'2 \ "2 7y,2 / '1 + a O x / (a) 

Here q:i: = lira t l, u is the rigidity coefficient of the hinged joint, and u~ = 2 - uj (j = 1, 2). Condition (1) 
r - - L + O  

means continuous vertical displacements of the plate par ts  on the line of contact ,  condition (2) implies equal 
1)ending moments at the edges of the cont~wting parts,  condit ion (3) means the zero stun of the shear forces, 

and condition (4) assumes elastic hingiIlg. 
We now consider some particular cases. As \ --+ oc, the plate parts are rigidly joined (for all ice sheet, 

this is the case of frozen-together ice floe, s [31) and, according to condition (4), we have 
Orl + Oq- 
O.T 0.~" 

Conditions (1) (3) preserve their fbrm. 
For k = 0, we have fl'ee hinging, which corresponds to the superposition of ice floes [5] in the case of 

an ice sheet, and conditions (2) and (4) take the form 

o2 0,) u ~ q+ Dl ~ + u l ~  ' q - = D 2  ~ +  20y. 2 = 0 .  
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This is tile ti'ee-edge condition which assumes the zero bending moment. The second free-edge condition, 
which assumes the zero shear force, shouht also be satisfied at the front edge of the plate: 

+ .~ ,~ = ~ ~ + ,/, .1~ = 0 ( : ,=  0, ~ = H). 

T h e  M e t h o d  o f  So lu t ion .  To solve the posed problem, the conjunction method [2] is used. The 
region S, which is occupied by the fluid, is divided into three parts: St ( -oc  < x < 0), $2 (0 < x < L), and 
$3 (L < x < co); in each region. ~(:c. z) is denoted by ~/(.c, z) (l = 1.3). 

Using the relation Oq/Ot = O~/Ozl-_=tt, we express the contact-boundary eonditio, �9 in terms of the 
wdues of the l)otentials at the edges of the correst)onding parts  of the plate for z = H: 

o ( o ~ _  ,~ ) =  ~ ( ~  ~ / ~ , _ , ) = 0  ( ~ = 0 ) ,  

0~___s _ 0~_____33 (x = L), 
Oz Oz 

0 (0"~2 u13"-~o.) D~ ~ ~ - 

' 2 , o 0 {0-,;2 , ) 
DI ,-7-'77"-., .-'y'5-.) - / / I / 3 2 y 2  

OxOz \ O:r- 
02 ( 0 2 ~ 3  ) 

0 0 2 ,/".A2~3) = k (~3  - ~2)  (x  = L) .  
k 

D~ ~ - 

%Ve now pt%ss to dimensionless vmialfles with tile use of the basin depth H as a scale of length and 

v/H~9 ~s a scale of time. 
The flmctions ~t are sought in the form of an expansion in terms of eigenflmctions of the corresponding 

boundary-value problems: 
OG 

~l = [Eo exp (- ia : r )  + At, exp (iax)lYo(ko, z) + Z A,, exp (a,,x)Y) (k,,, :),  
n =  l 

I 

~2 = [BoexI)(-iq}/) ~') + Coexp(iq; '):r)]YO('';U, z) + E Gmexp(s!l)x)c~ 
(5) 

<210 

+ E [B,,. exp (-q}/):r) + 07,, exp (q(1)x)]}] (r}, 1), z), 
n----I 

4 oo 

~:~ = Voexp(-~q~o'%lro("~o~), :) + ~ Km exp (4~)~)c~  (P~2 --) + Z r"e~p(--q!g):"IY~("!~)')':) 
l n , - ~ - 3  n , ~  I 

Here Eo = iav/Ao(ko)/(~ coshko), k,, (n, = 1, 2 . . . .  ) are the real roots of the equation w '~ = -k , ,  tan k,, and 

(v,, = ~ + 3r i"{/) (j = 1, 2) are the positive roots of the equation 

a2 (1 + ~j'r t)r  t anh  r 
= : (6) 

1 + "yjr t anh  r 

- ( 7 )  

--. (j) ~j = Dj /H L, and ~/j = #jg/H. Equation (6) also has an infinite number of purely imaginary roots ~-,rr,, 

(n = 1,2 . . . .  ) and q}J) = ~/('r~J)) 2 + t32 and four eomplex roots Z[ZG r(j) 4-iA(J) [a(J) > 0, A(J) > 0]. The 
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p!J) quantities • q= ia(J) and .sl;{ ) ~/(p~J))2 +3 2 .  We number s (j) as follows: "(j) = c(J) • id(J) ~ , n t  " ~ 1 , 2  ' ' , 

s (j) - c  (j) • id  (j) [c (j) > 0 and d(J) > 01. Tile functions Y0 and Y,, (n = l. 9 . .) have the form 

l 

_ _  f 1 sinh (2~) r0(~, :) - eosh~,(~:) a0(~) = cosh 2 (~:) d:  = ~ + - - 4 ~  

0 

[ 

f 1 sin (2,~___~) YI (~, z) - cos (,~z) A l  ( ~ )  = COS 2 (,~z) dz = ~ + 4~ 

0 

The propert ies  of eigenvalues and eigenfimetions have been studied in detail (see, e.g., [2]). The  modes 

related to k,,, and r! j) are called edge modes, and the modes defined by tile complex roots p}J) are called 
, ( J )  growing or damping progressive waves, depending on the sign Re ~s,,, ). For the numl)ering introduced,  the 

modes determined by s?  ) and s! j) . s~ j) and s~ j) are damping �9 . ~ are growing modes, and those determined bv , 
modes. Relations (5) are written with allowance for the generation condition which implies the absence of an 
incoming wave from the region x > L, and the bounded potentials v:t as :r -+ - ~  and ~3 as x --+ e~. The 
modes related to ,'(0 j) are progressive flexural-gravitational waves at real values of q(J) in (7). For r(0 j) < /3, 

the values of q(o j), however, become imaginary, which corresponds to the edge mode. The value of the angle 
0 = Oj. where 

Oj = ar('sin (r0(J)/ko), (8) 

is called a critical value for the appropriate parts of the plate. 

By vir tue of the continuous motion of the fluid in tile region S. tile continuity conditions for the 
I)otcntials and velocities of the horizontal wave flows are set at the boundaries of the regions Sl: 

0~ l 0~s2 
~ = ~ 2 ,  0:,-- - 0:,--7. (:,, = 0,  (} ~< : ~< 1): 0 )  

0c22_ 0~3 ( x = L ,  0<~:~< 1). (10) 
~2 = ~3, 0:r Ox 

Using the reduct ion method, we replace the infinite series in (5) by the finite stuns with N terms. The 
coordination conditions (9) and (10) are satisfied in the integral meaning [they are multil)lied sequentially 

/t "(j) z) (n = 1. N) and integrated on the interwfl by the functions Y0(k0, z), }'i)(,'(0 j). z). YI (k,,, :) ,  and !el, ,~ , 
0 ~< z ~< 1]. As a result, tile l)roblem is reduced to a linear system of 4N + 10 equations, which is solved 
numerically. 

After all the desired complex coefficients in (5) are calculated, one can determine the wave motion of 
the fluid and the deformations of the t)latc. As is noted in [4], the contact-boundary conditions (1)-(4) are 
dissipation-free: therefore, the energy flux shouht be preserved Ul)On l)assage over the I)lane x = L. Therefore,  
tile energy relation [7] 

IRI 2 + QITI '~ = 1, (11) 

which is inherent in a senti-infinite homogeneous plate, where tile reflection eoefficient of a surface wave R 
and the transmission coefficient of a flexural-gravitational wave T are. r('spe(-ti~wly, equal to 

Ao r};2)Fo sinh r ;  2) [ Ao(ko) 

H = E-~o" T =  koE0sinhk0 VAo(r~)'-')) " 

Q = Re (q;2))k~ sinh (2ko) 2r(~176 ' + 1 - 7 2 ~ 2 )  + sinh (2rl~2))(5d,2(r};2)) ' + 1 -7.2u. '2) 
Re ((t)(r(o '2))2 sinh (2r;'-')) [2ko + sinh (2ko)] 

should be satisfied. 
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The  approx imate  method of determining tile reflection and transmission coefficients is the solut ion of 

tile problenl considered without allowing for boundary waves, i.e., the infinite sums in representat ions (5). 

Tile solution of this problem is simpler, because it is reduced to a system of only 10 linear equations. 

N u m e r i c a l  C a l c u l a t i o n s .  In the calculations, the characteristics of the plate are the same as those in 
tile experiment  of [8] (hereinafter, we shall return to dinmnsional variables): E 2 = 103 MPa, h2 = 3.8 cm, and 

P2 = 220 k g / m  3. The  thickness of the water layer in the channel was H = 1.1 m. For these w~lues, we have 

52 = 3.6- 10 .2  and 3'2 = 7.6.10 -a.  The  mtmerical and experimental  values of the vertical displacements  and 
bending moments  upon  normal incidence of surface waves on a homogeneous band 10 m wide are compared  

in [9]. 
We assume tha t  the plate front part  of width L = 1 m is hinged to tile basic part:  note tha t  the  Young 

modulus  can be ei ther  equal or unequal to E2. The other parameters  of this par t  correspond to those of  tile 

basic plate: h4 = h2, Pl = p2, and I/l = I/2 = 0.3. 
Figure 1 shows tile dependence of the reflection-coefficient modulus ]R I on ~ = aJ x / - H ~  upon nornml 

incidence of waves (0 = 0) aim El = E2. Curve 1 corresponds" to rigid joining of the plates, curve 2 to free 
hinging, and curves 3-5 to elastic hinging with the dimensionless rigidity coefficients '0 = k/H 3 = 10 -'3, 10 -2, 

and  10 - l .  The approx imate  solutions without the edge modes are represented by curves 6 and 7 for rigid 

and  flee hinging, respectively. As is done in [2], these solutions can be applied only to fairly long waves. 

The  effect of  oblique incidence (0 = 15 ~ is shown in Fig. 2a-c for El = E,2, EI/E'2 = 0.1, and 
Et/E2 = 10, respectively. The notat ion of the curves 1-5 in Fig. 2 is the same as tha t  in Fig. 1. T h e  values 

of  IR[ for & < 1 are omi t ted  in Figs. 1 and 2, because they do not exceed 0.1. According to (8), the  critical 

angle 02 = 15 ~ corresponds to K'I ~ 3.413, and 0t = 15 ~ to 5'2 ~ 4.560 (Et/E2 = 0.1) and c~a ~ 2.580 
(El~E2 = 10). One can see that,  changing tile elasticity propert ies of the front par t  and the characteris t ics  

of  the  hinged joint, one can vary the reflection coefficient of the surface waves from the plate within a wide 
range  and, hence, control  the amount  of energy transferred inside the basic par t  of the plate. The  increase 

in the rigidity coefficient of the hinged joint allows a smooth  passage from free hinging to rigid joining of the 

p la te  parts.  
The  vertical displacements of the plate can be presented in the form 

'/(:~'. :/-t) : Re{((:~') exp [,:(~'t - 8y)]}. 

T h e  distrilmtion of the aml)litude of vertical displacements I~l/a on the site 0 ~< :r/H <~ 2 is shown in 

Fig. 3a and |), respectively, for normally and ol)tiquely (0 = 15 ~ incident surface waves with the period 
r = 2rr/~,, = 0.7 sec for ~ ~ 3.006. Curves 1 -3 in Fig. 3 refer to calculation results for rigid joining of the 

p la te  par ts  for Et/E-,2 = 0.1, 1, and 10, and curves 4 6 refer to calculation results for free hinging a t  the 
s ame  parameters .  One  can see that  far from the leading edge, the amplitudes of the vertical d isplacements  

of  the  plate are affected by the composite character of the plate negligibly if the surface waves are reflected 
partially.  For normal ly  incident waves, a decrease in the ampli tude of vertical displacements is observed only 
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for hinging (curves 5 and 6 ill Fig. 3~t; fRI ~ 0.876 and  0.882 for EI/E~ = 1 and H), respectively). Tile most 
c(msiderable decrease in plate oscillations occurs for obliquely incident waves and for a leading edge more 
rigid than the basic plate when tile angle  of incidence of tile waves exceeds tile critical value (curves 3 and (J 

in Fig. 3b). 
The calculation accuracy with  allowance for the  edge modes was checked by increa.sing their nmnber  

ill sequence; it was assmned to be N : -  30 ill this work, and tile error of satisfaction of tile energy relation 

(11) did not exceed 3<~. 
This work was supported by the  Russian Founda t ion  for Fundamental  Research (Grant  No. 97-01- 

00897) and Integrat ion Project No. 43 of tile Siberian Division of tile Russian Academy of Sciences. 
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