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DIFFRACTION OF SURFACE WAVES
ON AN INHOMOGENEQOUS ELASTIC PLATE

I. V. Sturova UDC 532.59:539.3:534.1

The obligue incidence of small-amplitude waves on an elastic semi-infinite composite plate
floating on the free surface of finite-depth water is studied. The front part of a constant-width
plate is hinged to the basic part and has characteristics different from those of the basic part.
The reflection and transmission coefficients of the waves and the vertical displacements of the
plate are determined. It is shown that the heterogeneity of the plate material exerts a strong
effect on surface-wave diffraction. Methods for decreasing the elastic deformations of the basic
part of the plate are proposed.

The problem of surface-wave difiiaction by a thin elastic plate located on the free surface of water is
of interest for studying the behavior of an ice sheet and man-made structures such as floating platforms. In
the linear approximation, this problem for a homogeneous plate in the form of a half-plane or band has been
examined quite adequately [1. 2]. In the ice sheet, the heterogeneities appear as a result of cracking, breaking,
and hummocking. The effect of these heterogeneities has been considered in [3-6]. For artificial structures,
the heterogeneities of material can be more diverse and even created artificially with a view toward decreasing
the clastic deformation in the middle part of a floating platform.

In this paper, the oblique incidence of monochromatic surface waves on a semi-infinite elastic plate
whose front part is a freely supported band with characteristics different from those of the basic part is
studied.

Formulation of the Problem. An elastic semi-infinite composite plate whose settling is assumed to
be negligible floats on the free surface of a basin of constant depth H. A progressive wave with frequency w
is incident from the side of the free surface of the basin at an angle to the rectilinear edge of the plate. The
coordinate system is chosen in such a way that the coordinate origin is located at the basin bottom under
the plate edge, the = and y axes are perpendicular and parallel to it. respectively, and the z axis is directed
vertically upward. The plate consists of two parts: the front part of constant width L is characterized by
Young modulus E|, thickness h;, density p;, Poisson’s ratio v(; the other part of the plate has, respectively.
the following characteristics: E, ha, ps. and vy. The edges of the plate components are freely supported on
thelinexz =1L, z=

The incoming wave propagates at an angle ¢ to the = axis and is determined by the velocity potential

do(x.t) = wolx, z) exp [i(wt — 3y)].
Here
iag cosh (kgz)

P = m—)—(}:\—p(—i();1~), (o, B) = ko(cos.sinf), @ = (r.y.z).
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[a is the wave amplitude. g is the acceleration of gravity, and the wavenumber kg is the positive root of the
equation w? = gkg tanh (ko H)]. Hereinafter, in the expressions that contain the factor exp (iwt), only the real

part has a physical meaning,.
We consider steady waves, and since the elastic-plate length is infinite, the velocity potential of the

perturbed motion of the fluid is sought in the form
O(x.t) = ¢z, z) exp [i{wt — y)]-

For determination of (»(z, z), it is necessary to solve the equation

e Py
out Tz TP =0
with the boundary conditions 9 o2
92 _Yo=0  (r<0, z=H)
: g
& 2\? 2] 9 w?
[Dl((),—d>+1—/ucu]—é;—7c,——0 (0<z< L, z=H).
0 2)? 9] 0¢ w?
[Dz(a;g—d) + 1 — pow 5;-——g—<p_() (r> L, z=H),
_ngO (z=0),

where D; = E jh,'j (12pg(1 - 1/ ). itj = pihj/(pg) (7 = 1, 2), and p is the water density. The plate is assumed
to contact with water at any pomt and at any moments of time. The contact-boundarv conditions, which
are reduced to specifying the shear forces, bending moments, and vertical displacements, should be satisfied
at the edges of separate parts of the plate.

Contact-Boundary Conditions. According to [4, 6], the following conditions for vertical displace-
ments of the plate n(x. y.t) are met on the hinged-joint line of the plate parts for r = L and = =

nt=n"; (1)

D(d()j +11§j)n_=D (dd:: +u_>£2 )n+; (2)
Dy ()() ((;)12 + 1} 5852-)1)‘ = Do gd;(;)(_); + b %)n)r; (3)
oo+t = (- ) o

Here * = li}n 7, x is the rigidity coefficient of the hinged joint. and v} = 2 — v; (j = 1. 2). Condition (1)

means continuous vertical displacements of the plate parts on the line of contact, condition (2) implies equal
bending moments at the edges of the contacting parts, condition (3) means the zero sum of the shear forces,
and condition (4) assumes elastic hinging.
We now consider some particular cases. As Y — 00, the plate parts are rigidly joined (for an ice sheet,
this is the case of frozen-together ice floes [3]) and, according to condition (4), we have
ont on”
dr ~ Or

Conditions (1)-(3) preserve their form.
For y = 0, we have free hinging. which corresponds to the superposition of ice floes [5] in the case of

an ice sheet, and conditions (2) and (4) take the form
492 09 2 92

Dl(a-()x;i‘}'vly);')’ll_:D (;NL/Q()})) -
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= 1,2,...) and q(’)

This is the free-edge condition which assumes the zero bending moment. The second free-edge condition
which assumes the zero shear force, should also be satisfied at the front edge of the plate

0? 0 d 1O , 0%
(W‘}—UI-O”T]TZ)”—EI('—OF-i-l/'W),)—() (a z=H).

The Method of Solution. To solve the posed problem. the conjunction method [2] is used. The

region S, which is occupied by the fluid, is divided into three parts: §; (—o0o <2 < 0), S2 (0 <& < L), and
S3 (L < x < o0): in each region. ((z. ) is denoted by ¢(z, z) (1 =1.3)

0.

Using the relation 0n/ot

08 /0z|.=H, we express the contact-boundary conditios
values of the potentials at the edges of the corresponding parts of the plate for

in terms of the
%(%ff; - 7/1,4’32’»92) = 5?;—2(% - VWQY”‘_») =0 (z=0),
2.9 )
D, %(%g - 1/1.32’»32) D, (? 6;’9,23 U2.‘32‘»?3) (x = L),
D, —da_g (% 7/2."329?3) =Xz A

droz wa v (@=1)
We now pass to dimensionless va:iiables with the use of the basin depth H as a scale of length and
H/g as a scale of time.

gth :
The functions ¢; are sought in the form of an expansion in terms of eigenfunctions of the corresponding
boundary-value problems: :

o
[Eg exp (—icer) + Ag exp (icex)]Yo(ko, 2) + Z Apexp (a,2)Y1(ky. 2)

n=l1

= [By exp (—ig}"

x) + Coexp iy o) Yo(r", 2 +ZG exp (s4)) cos (p{D)z)
m=1

m

+Z[B,,,exp -q,(,'). 1) + Cp exp (q(l)r)]};( (1) .2),
n=1

23 = Fyexp (—igl) ) Yo(r§). =

o
}+ Z K exp(s m ‘L) cos (P )+ Z F,exp (—(1 I)Yi( 2 . Z)-
m=3 n=1
Here Ey = l(l\/A() 1\0 /(wcoshkg). k, (n=1,2....) are the real roots of the equation w? = =k, tan k,, and
o, = k2 + 5% I (] = 1, 2) are the positive roots of the equation
,  (L+0;7Yrtanhr .
wo = : (6)
1+ v;rtanhr
a§ = (67 = 2,
= Dj/Hl, and Yi =

(7)
©;g/H. Equation (6) also has an infinite number of purely imaginary roots ir
V 7'11.. : 52

o3 inl)
- ! n
(r9")2 + 82 and four complex roots +ol) £ A [¢W) > 0, A\U) > 0]. The



quantities pg,j;,) = +A0) x jol) and sg;’;) = p%) 24 32, We number si,’,) as follows: s(j ) = ) 4 id)
1,2

s(;’i = —c\) 4 4dW) [c(j) > 0 and dU) > 0]. The functions Yy and Y,, (n = 1.2,...) have the form
1
cosh (£z) / 2 1 sinh (2€)
Yo(€.2) = ——=, A = [ cosh®(£z)dz = = + ————~,
o6 = Ui 0= [+ S
(&) 1 (29)
. cos (&2 9 1 sin(2¢
Vg = FEL a9 = [eost(6)dz = 5+
VAL©® ; ; 2

The properties of eigenvalues and eigenfunctions have been studied in detail (see, e.g., [2]). The modes
related to k,, and 1,(3 } are called edge modes, and the modes defined by the complex roots pS,J) are called
growing or damping progressive waves, depending on the sign Re (sg,]l) ). For the numbering introduced, the
modes determined by s(lj ) and s.(zj ) are growing modes, and those determined by sg ' and saj ) are damping
modes. Relations (5) are written with allowance for the generation condition which implies the absence of an
incoming wave from the region £ > L, and the bounded potentials v} as » — —o0 and 3 as © — co. The

modes related to r(()j ) are progressive flexural-gravitational waves at real values of q(()j ) in (7). For 7'(()j ) < 3.

the values of qéj ) . however, become imaginary. which corresponds to the edge mode. The value of the angle
0 = §;. where

0; = arcsin ( z'éj ) /ko). (8)
is called a critical value for the appropriate parts of the plate.

By virtue of the continuous motion of the fluid in the region S. the continuity conditions for the
potentials and velocities of the horizontal wave flows are set at the boundaries of the regions S;:

der g

A= = r=0. <:<1); ¢

L=y i dx (r=0.0 ) ©)
Doy Oy

2o = (O- - —_— €Xr =L, ( g ot S 1).

#2278 or ox (@=L 0 ) (10)

Using the reduction method, we replace the infinite series in (5) by the finite sums with N terms. The
coordination conditions (9) and (10) are satisfied in the integral meaning [they are multiplied sequentially
by the functions Yy(ky. z), }’Z)(r(()j ).z). Yi(kn. ), and Y;(rf,,j ),z) (n = 1.N) and integrated on the interval
0 € = € 1]. As a result, the problem is reduced to a linear system of 4N + 10 equations, which is solved
numerically.

After all the desired complex coeflicients in (5) are calculated. one can determnine the wave motion of
the fluid and the deformations of the plate. As is noted in [4], the contact-boundary conditions (1)-(4) are
dissipation-free: therefore, the energy flux should be preserved upon passage over the plane x = L. Therefore,
the energy relation [7]

IR + QIT)* =1, (11)

which is inherent in a semi-infinite homogeneous plate, where the reflection coefficient of a surface wave R
and the transmission coefficient of a flexural-gravitational wave T are. respectively. equal to

R ﬂ 7= r'(()z)F}, sinh 1'(()2) Aplko) .
Ey ko Ey sinh kg ‘,\“(',((J‘-’-))

PATEN D\, o . a (2 -
0 = Re (g k2 sinh (2kg) 270 G206 41 = 70 & sinhy (207) (501! +1 = 7e?)
o Re ((Y)(’I'(()Q))2 sinh (27'((,')) )[2ko + sinh (2k)]

should be satisfied.
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The approximate method of determining the reflection and transmission coefficients is the solution of
the problem considered without allowing for boundary waves, i.e., the infinite sums in representations (5).
The solution of this problem is simpler, because it is reduced to a system of only 10 linear equations.

Numerical Calculations. In the calculations, the characteristics of the plate are the same as those in
the experiment of [8] (hereinafter, we shall return to dimensional variables): E5 = 103 MPa, hy = 3.8 cm, and
p2 = 220 kg/m3. The thickness of the water layer in the channel was H = 1.1 m. For these values, we have
03 = 3.6-1072 and vo = 7.6- 1073, The wunerical and experimental values of the vertical displacements and
bending moments upon normal incidence of surface waves on a homogencous band 10 m wide are compared
in [9].

We assume that the plate front part of width L = 1 m is hinged to the basic part: note that the Young
modulus can be either equal or unequal to E». The other parameters of this part correspond to those of the
basic plate: hy = ha, p) = pa, and 1} = 1y = 0.3.

Figure 1 shows the dependence of the reflection-coefficient modulns |R| on @ = w\/_}ﬁg} upon normal
incidence of waves (8 = 0) and E| = E,. Curve 1 corresponds to rigid joining of the plates. curve 2 to free
hinging, and curves 3-5 to elastic hinging with the dimensionless rigidity coefficients ¥ = x/H® = 1073, 1072,
and 107!, The approximate solutions without the edge modes are represented by curves 6 and 7 for rigid
and free hinging, respectively. As is done in [2], these solutions can be applied only to fairly long waves.

The effect of oblique incidence (§ = 15°) is shown in Fig. 2a—c for £y = Ey, E{/E; = 0.1, and
E\|/E, = 10, respectively. The notation of the curves 1-5 in Fig. 2 is the same as that in Fig. 1. The values
of |R| for @ < 1 are omitted in Figs. 1 and 2, because they do not exceed 0.1. According to (8), the critical
angle 6y = 15° corresponds to &) =~ 3.413. and 6; = 15° to @2 =~ 1.560 (E;/E> = 0.1) and @3 = 2.580
(E\/E> = 10). Oue can see that, changing the elasticity properties of the front part and the characteristics
of the hinged joint, one can vary the reflection coefficient of the surface waves from the plate within a wide
range and, hence, control the amount of energy transferred inside the basic part of the plate. The increase
in the rigidity coefficient of the hinged joint allows a smooth passage from free hinging to rigid joining of the
plate parts.

The vertical displacements of the plate can be presented in the form

n(z.y.t) = Re{((x) exp [i(wt — By)]}.

The distribution of the amplitude of vertical displacements |{|/a on the site 0 < 2/H < 2 is shown in
Fig. 3a and b, respectively, for normally and obliquely (8 = 15°) incident surface waves with the period
7T = 2r/w = 0.7 sec for @ & 3.006. Curves 1-3 in Fig. 3 refer to calculation results for rigid joining of the
plate parts for E)/Es = 0.1, 1, and 10, and curves 4-6 refer to calculation results for free hinging at the
same parameters. One can see that far from the leading edge, the amplitudes of the vertical displacements
of the plate are affected by the composite character of the plate negligibly if the surface waves are reflected
partially. For normally incident waves, a decrease in the amplitude of vertical displacements is observed only
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for hinging {curves 5 and 6 in Fig. 3a; |R| &~ 0.876 and 0.882 for E|/Es = 1 and 10. respectively)}. The most
considerable decrease in plate oscillations occurs for obliquely incident waves and for a leading edge more
rigid than the basic plate when the angle of incidence of the waves exceeds the critical value (curves 3 and 6
in Fig. 3b).

The calculation accuracy with allowance for the edge modes was checked by increasing their number
in sequence; it was assumed to be N = 30 in this work, and the error of satisfaction of the energy relation
(11) did not exceed 3%.
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